AMS
Release 0.9.0

Jinning Wang

Feb 27, 2024

1 Getting started

2

1.1 Package Overview
1.2 Imstallation
121 NewtoPython
1.2.2 Extrasupportpackage
1.23 DevelopInstall
1.24 Updating AMS
1.2.5 Uninstall Multiple Copies
1.2.6 Troubleshooting
1.3 Inputformats
131 AMSKXISX
1.32 PSS/ERAW oo
1.3.3 MATPOWER
1.34 PYPOWER
1.4 Testcases v o vt i e
141 Summary
142 Howtocontribute
1.5 Verification 0 oL
1.5.1 DCOPF Verification
1.6 License i e
1.6.1 GNU Public License v3
1.7 Quickinstall,
Examples
2.1 Simulate
2.1.1 Import and Setting the Verbosity Level
2.1.2 Run Simulations
2.2 Manipulate the Simulation
2.2.1 Manipulate the Simulation
2.2.2 Disable the Constraints
223 AltertheConfig
2.3 InspectingModels
2.3.1 List all models and routines
2.3.2 Check routine documentation
233 DataCheck
24 Casel/O
241 Input.
242 Output.
2.5 Interoperation with ANDES
25.1 Dispatch

AMS MANUAL

N1 AP P W W WW

2.5.2 Convertto ANDES e e 41

2.5.3 Interoperation with ANDES e 43
2.6 Multi-period Dispatch Simulation L 45
2.6.1 LoadCase i e e e e e e e e 45
2.6.2 Reginonal Design e 45
2.6.3 Multi-period Dispatch Base 46
2,64 SolveandResult 47
2.7 Output Simulation Results o e e e 48
2.7.1 Importcase and run simulation oL o 48
272 Reporttoplaintext L 49
273 Exportto CSV . . L . e 50
274 Cleanup v v v i e e e e e e e e e e e e e e e e e e 51
2.8 Customzie Formulation e 51
2.8.1 Inspect the Optimization Problem Structure 51
2.8.2 Customize Built-in Formulation, 52
Development 57
3.1 System e e e 57
311 OVervIeW o e 57
3.1.2 Device-level Models e e e e e e 58
3.1.3 Routine-level Models e 58
314 Optimization o e e e e e e e e e e e e e e 58
32 Device e e 59
3.2.1 0 Parameters e 59
3.2.2 Variables L e e e e 59
323 Model e e e e e e e e 59
324 EXampleSo . e e e e e e e e e e e e e e e e 60
33 Routine o . e e 62
331 DataSection. e e e e e e e 62
3.32 Model Section L. e e e e e e e e e e 63
3.3.3 Interoperation with ANDES 84
34 EXamples e e e e e e e e e e e e e e e 86
34.1 DCOPF . . . e e 86
Release notes 91
4.1 Pre-vI.0.0 . . o e 91
4.1.1 0 v09.0 (2024-02-27) « o o o e e e e e e 91
4.1.2 v0.8.5(2024-01-31) L e 91
4.1.3 v0.8.4(2024-01-30) L e 91
4.1.4 v0.83(2024-01-30) L e 91
4.1.5 v0.8.2(2024-01-30) oL e 92
4.1.6 v0.8.1(2024-01-20) o . e e e e 92
4.1.7 v0.8.0(2024-01-09) e 92
4.1.8 v0.7.5(2023-12-28) o e 92
4.1.9 v0.7.4 (2023-11-29) L e 92
4.1.10 v0.7.3 (2023-11-03) o o o e e 92
4111 v0.7.2(2023-10-26) o o e e e e e e 92
4.1.12 vO.7.1(2023-10-12) . . . o o o e e e e 93
4.1.13 v0.7.0 (2023-09-22) e e e e 93
4.1.14 v0.6.7 (2023-08-02) o e 93
4.1.15 v0.6.6 (2023-07-27) . . o v v e e 93
4.1.16 v0.6.5(2023-00-27) . . o ot e e e e e 93
4.1.17 v0.6.4 (2023-05-23) L e e e e 93
4.1.18 v0.6.3(2023-05-22) L. e 93

5 Routine reference

6

5.1

5.2

53

54

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

4.1.19 v0.6.2 (2023-04-23) e e e e e e e e e e
4.1.20 v0.6.1 (2023-03-05) o e e e e e e e
4.1.21 v0.6.0 (2023-03-04) e e e e e e e e e e e
4.1.22 v0.5(2023-02-17) . . .« o e e e e e
4.1.23 v0.4 (2023-01) e e e
ACED e e
5.1.1 ACOPF e e e
DCED e e e e
5.2.1 DCOPF . . . e e e e e e e
522 ED . . e e e e e e e e e e e e e e
523 EDDG e e e e e
524 EDES e e
525 RTED e e e e
5.2.6 RTEDDG e e e e e e
5.277 RTEDES e e e e e e e e e e
5.2.8 RTEDVIS e e e e e e e
DCUC . . . e e
53.1 UC. . e e
532 UCDG. . . . e e
5.33 UCES e e e e e e e e e e
DED . . e e e e e e e
5.4.1 DOPF e e
5.42 DOPFEVIS e
P . e e
5.5.1 DCPF e e e e e e e e e e
552 PFIOW o e e e e e e e e e e e e e e e e e
553 CPF . . . e e e
UndefinedType o o o e e e e e
Model reference
ACLINE o e e e e e
6.1.1 Line e e e e e
ACTOPOlogy . . . o o e e e
6.2.1 BUS . .. e e e e e e e e e e
Collection e e e e e e e e e e e e e
6.3.1 ATeA e e e e e e e e e e e e e e e e
6.3.2 Region. e e e e e
COSt . o o e e e e e e
6.4.1 GCOSt . . . v o e e e e e e e e e e
6.42 SFRCOSL o o e e e e e e e e e e e e e e e e e e
6.43 VSGCOSt ot e e e e e e e e e e e e e e e e
6.4.4 DCOSt e e e e e e e
DG . . e e e
6.5.1 PVDI1 . . e e e e e e e
6.5.2 ESDI e e e e e e e e e e
Horizon e e e e e e e e e
6.6.1 TimeSIot L e e e e e e
6.6.2 EDTSIOt e e
6.6.3 UCTSIOt. o e e e e e e
Information e e e e e e e e e e e
6.7.1 Summary e e e e e e e e e e
RenGen e e e e e e e e e

6.8

101
103
106
109
111
113
115
116
119
122
125
125
127
129
130
130
131
131

133
133
133
134
135
135
135
136
137
137
137
138
138
138
139
139
140
140
141
141
141
142
142

6.9

6.10

6.12

6.13

6.14

6.8.1

Reserve o e e e e e e e e e

6.9.1
6.9.2
6.9.3
6.9.4

VSGR . . o e e

StaticGen e e e e e e e e e e e e e e e e e
6.10.1 NOLES ottt e
6.10.2 Parameters e
6.10.3 Variables e e e e e e
6.10.4 Parameters e
6.10.5 Variables e e e e e
StaticLoad e e e e e e e e e e e e e
6.11.1 PQ . . e e e e e e e e e e e e
StaticShunt L e e e e e e e
6.12.1 Shunt e
Undefined e e e e e
6.13.1 SRCOSt e e e e e e e e e e e e
6.13.2 NSRCOSt o e e e e e e e e e e e e e e e

VSG

6.14.1 REGCVI e
6.142 REGCV2 e

API reference
SYSIEM . . . o o e e e e e e e e e e e e e

7.1

7.2

1.3

7.4

7.5

7.6

7.7

7.1.1

7.2.3

AMS.COTC.PATAIN o L b b vttt e
AMS.COTE.SETVICE . v v v v v i e

Routines e e e e e

7.3.1

amsS.Toutines.Toutine e e e e e e e e e e e e e e e e e

Optimization o o o e e e e e e e e e e e e e e e e e

7.4.1
/0
7.5.1

ams.optomodelo

AMS.0 . . o o e e e e e e e e e e

Interoperability L e e e e e e e e e

7.6.1

AMS.ANIEIOP . .« . . o L o e e e e e e e e e e e e e e e e e

Others e e e e e e e

7.7.1
7.7.2
7.1.3

Bibliography

Python Module Index

Index

AMS, Release 0.9.0

Useful Links: Source Repository | Report Issues | Q&A | LTB Repository | ANDES Repository

LTB AMS is an open-source packages for dispatch modeling, serving as the market simulator for the CURENT Large
scale Testbed (LTB).

AMS enables flexible dispatch modeling and interoprability with the in-house dynamic simulator ANDES.
Getting started

New to AMS? Check out the getting started guides.

To the getting started guides

Examples

The examples of using AMS for power system dispatch study.
To the examples

Model development guide

New dispatch modeling in AMS.

To the development guide

API reference

The API reference of AMS.

To the API reference

Using AMS for Research?

Please cite our paper [Cui2021] if AMS is used in your research for publication.

AMS MANUAL 1

https://github.com/jinningwang/ams
https://github.com/jinningwang/ams/issues
https://github.com/jinningwang/ams/discussions
https://github.com/CURENT/
https://github.com/CURENT/andes

AMS, Release 0.9.0

2 AMS MANUAL

CHAPTER
ONE

GETTING STARTED

1.1 Package Overview

AMS is an open-source packages for flexible dispatch modeling and co-simulation with the in-house dynanic simulation
engine ANDES.

AMS is currently under active development. To get involved,
* Report issues in the GitHub issues page
* Learn version control with the command-line git or GitHub Desktop

This work was supported in part by the Engineering Research Center Program of the National Science Foundation and
the Department of Energy under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.
AMS is made open source as part of the CURENT Large Scale Testbed project.

AMS is developed and actively maintained by Jinning Wang. See the GitHub repository for a full list of contributors.

1.2 Installation

1.2.1 New to Python

Setting Up Mambaforge

If you are new to Python and want to get started quickly, you can use Mambaforge, which is a conda-like package
manager configured with conda-forge.

Step 1:

Downloaded the latest Mambaforge for your platform from https://github.com/conda-forge/miniforge#mambaforge.
Most users will use x86_64(amd64) for Intel and AMD processors. Mac users with Apple Silicon should use
arm64 (Apple Silicon) for best performance.

Next, complete the Mambaforge installation on your system.

Note: Mambaforge is a drop-in replacement for conda. If you have an existing conda installation, you can replace all
following mamba commands with conda and achieve the same functionality.

If you are using Anaconda or Miniconda on Windows, you should open Anaconda Prompt instead of Miniforge
Prompt.

Step 2:

https://github.com/curent/andes
https://github.com/CURENT/ams/issues
https://git-scm.com/docs/gittutorial
https://help.github.com/en/desktop/getting-started-with-github-desktop
https://curent.utk.edu
https://jinningwang.github.io/
https://github.com/conda-forge/miniforge#mambaforge

AMS, Release 0.9.0

Open Terminal (on Linux or maxOS) or Miniforge Prompt (on Windows, not cmd!!). Make sure you are in a conda en-
vironment - you should see (base) prepended to the command-line prompt, such as (base) C:\Users\username>.

Create an environment for AMS (recommended)

{mamba create --name ams python=3.8]

Activate the new environment with

[mamba activate ams]

Note: You will need to activate the ams environment every time in a new Miniforge Prompt or shell.

If these steps complete without error, you now have a working Python environment. See the commands at the top to
Getting started AMS.

1.2.2 Extra support package
Some AMS features require extra support packages, which are not installed by default. For example, to build the
documentation, one will need to install development packages. Other packages will be required for interoperability.

The extra support packages are specified in groups. The following group names are supported, with descriptions given
below:

» dev: packages to support development such as testing and documentation

Note: TODO: Extra support packages are not supported by conda/mamba installation. One needs to install AMS with
pip.

To install packages in the dev when installing AMS, do:

[pip install ltbams[dev]

To install all extra packages, do:

[pip install ltbams[all]

One can also inspect the requirements-extra.txt to identify the packages for manual installation.

1.2.3 Develop Install

The development mode installation is for users who want to modify the code and, for example, develop new models
or routines. The benefit of development mode installation is that changes to source code will be reflected immediately
without re-installation.

Step 1: Get AMS source code

As a developer, you are strongly encouraged to clone the source code using git from either your fork or the original
repository. Clone the repository with

[git clone https://github.com/CURENT/ams

4 Chapter 1. Getting started

AMS, Release 0.9.0

Note: Replace the URL with yours to use your fork. With git, you can later easily update the source code and perform
version control.

Alternatively, you can download the AMS source code from https://github.com/CURENT/ams and extract all files to
the path of your choice. Although works, this method is discouraged because tracking changes and pushing back code
edits will require significant manual efforts.

Step 2: Install dependencies

In the Mambaforge environment, use cd to change directory to the AMS root folder. The folder should contain the
setup.py file.

Install dependencies with

mamba install --file requirements.txt
mamba install --file requirements-extra.txt

Alternatively, you can install them with pip:

pip install -r requirements.txt
pip install -r requirements-extra.txt

Step 3: Install AMS in the development mode using

[pythonB -m pip install -e .

Note the dot at the end. Pip will take care of the rest.

Note: The AMS version number shown in pip list will stuck at the version that was intalled, unless AMS is
develop-installed again. It will not update automatically with git pull.

To check the latest version number, check the preamble by running the ams command or chek the output of python
-c "import ams; print(ams.__version__)"

Note: AMS updates may infrequently introduce new package requirements. If you see an ImportError after updating
AMS, you can manually install the missing dependencies or redo Szep 2.

Note: To install extra support packages, one can append [NAME_OF_EXTRA] to pip install -e .. For example,
pip install -e .[interop] will install packages to support interoperability when installing AMS in the develop-
ment, editable mode.

1.2. Installation 5

https://github.com/CURENT/ams

AMS, Release 0.9.0

1.2.4 Updating AMS

Warning: If AMS has been installed in the development mode using source code, you will need to use git or
the manual approach to update the source code. In this case, Do not proceed with the following steps, as they will
install a separate site-package installation on top of the development one.

Regular AMS updates will be pushed to both conda-forge and Python package index. It is recommended to use the
latest version for bug fixes and new features. We also recommended you to check the Release notes before updating to
stay informed of changes that might break your downstream code.

Depending you how you installed AMS, you will use one of the following ways to upgrade.

If you installed it from mamba or conda, run

[conda install -c conda-forge --yes ltbams J

If you install it from PyPI (namely, through pip), run

[python3 -m pip install --yes ltbams]

1.2.5 Uninstall Multiple Copies

A common mistake new users make is to have multiple copies of AMS installed in the same environment. This can
happen when one previously installed AMS in the development mode but later ran conda install or python3 -m
pip install to install the latest version. As a result, only the most recently installed version will be accessible.

In this case, we recommend that you uninstall all version and reinstall only one copy using your preferred mode.
Uninstalling all copies can be done by calling conda remove ams and python3 -m pip uninstall ams. The
prompted path will indicate the copy to be removed. One may need to run the two commands for a couple of time until
the package managers indicate that the ams package can no longer be found.

1.2.6 Troubleshooting

If you get an error message on Windows, reading

[ImportError: DLL load failed: The specified module could not be found.]

It is a path issue of your Python. In fact, Python on Windows is so broken that many people are resorting to WSL2 just
for Python. Fixes can be convoluted, but the easiest one is to install AMS in a Conda/Mambaforge environment.

1.3 Input formats

AMS currently supports the following input formats:
» .xlsx: Excel spreadsheet file with AMS data
e .raw: PSS/E RAW format
* .m: MATPOWER format
¢ .py: PYPOWER format

6 Chapter 1. Getting started

AMS, Release 0.9.0

1.3.1 AMS xlIsx

The AMS xlIsx format allows one to use Excel for convenient viewing and editing. If you do not use Excel, there are
alternatives such as the free and open-source LibreOffice.

Format definition

The AMS xlIsx format contains multiple workbooks (also known as "sheets") shown as tabs at the bottom. The name
of a workbook is a model name, and each workbook contains the parameters of all devices that are instances of the
model.

1.3.2 PSS/E RAW

The Siemens PSS/E data format is a widely used for power system simulation. PSS/E uses a variety of plain-text files
to store data for different actions. The RAW format (with file extension .raw) is used to store the steady-state data for
power flow analysis. Leveraging ANDES PSS/E parser, one can load PSS/E RAW files into AMS for power flow study.

RAW Compatibility

AMS supports PSS/E RAW in versions 32 and 33. Newer versions of raw files can store PSS/E settings along with the
system data, but such feature is not yet supported in AMS. Also, manually edited raw files can confuse the parser in
AMS. Following manual edits, it is strongly recommended to load the data into PSS/E and save the case as a v33 RAW
file.

AMS supports most power flow models in PSS/E. It needs to be recognized that the power flow models in PSS/E is is
a larger set compared with those in AMS. For example, switched shunts in PSS/E are converted to fixed ones, not all
three-winding transformer flags are supported, and HVDC devices are not yet converted. This is not an exhaustive list,
but all of them are advanced models.

We welcome contributions but please also reach out to us if you need to arrange the development of such models.

Loading files

In the command line, PSS/E files can be loaded with

[ams run kundur.raw

Likewise, one can convert PSS/E files to AMS xIsx:

[ams run kundur.raw -c

This will convert all models in the RAW files.

To load PSS/E files into a scripting environment, see Example - "Working with Data".

1.3. Input formats 7

https://www.libreoffice.org

AMS, Release 0.9.0

1.3.3 MATPOWER

The data file format of MATPOWER is excerpted below for quick reference. For more information, see the MAT-
POWER User’s Manual.

Bus Data

name column description

BUS_I 1 bus number (positive integer)

BUS_TYPE 2 bus type (1 = PQ, 2 = PV, 3 = ref, 4 = isolated)

PD 3 real power demand (MW)

QD 4 reactive power demand (MVAr)

GS 5 shunt conductance (MW demanded at V = 1.0 p.u.)
BS 6 shunt susceptance (MVAr injected at V = 1.0 p.u.)
BUS AREA 7 area number (positive integer)

VM 8 voltage magnitude (p.u.)

VA 9 voltage angle (degrees)

BASE_KV 10 base voltage (kV)

ZONE 11 loss zone (positive integer)

VMAX 12 maximum voltage magnitude (p.u.)

VMIN 13 minimum voltage magnitude (p.u.)

LAM_P [1] 14 Lagrange multiplier on real power mismatch (u/MW)
LAM_Q [1] 15 Lagrange multiplier on reactive power mismatch (u/M Var)
MU_VMAX 1] 16 Kuhn-Tucker multiplier on upper voltage limit (u/p.u.)
MU_VMIN [1] 17 Kuhn-Tucker multiplier on lower voltage limit (u/p.u.)

1. Included in OPF output, typically not included (or ignored) in input matrix.Here we assume the objective function
has units u.

Chapter 1. Getting started

https://matpower.org/docs/MATPOWER-manual.pdf
https://matpower.org/docs/MATPOWER-manual.pdf

AMS, Release 0.9.0

Generator Data

name column description

GEN_BUS 1 bus number

PG 2 real power output (MW)

QG 3 reactive power output (MVAr)

QMAX 4 maximum reactive power output (MVAr)

QMIN 5 minimum reactive power output (MVAr)

VG [3] 6 voltage magnitude setpoint (p.u.)

MBASE 7 total MVA base of machine, defaults to baseM VA
GEN_STATUS 8 machine status, > O for in-service , <= 0 for out-of-service
PMAX 9 maximum real power output (MW)

PMIN 10 minimum real power output (MW)

PC1 [1] 11 lower real power output of PQ capability curve (MW)
PC2 [1] 12 upper real power output of PQ capability curve (MW)
QCIMIN [1] 13 minimum reactive power output at PC1 (MVAr)
QCIMAX [1] 14 maximum reactive power output at PC1 (M VAr)
QC2MIN [1] 15 minimum reactive power output at PC2 (MVAr)
QC2MAX [1] 16 maximum reactive power output at PC2 (M VAr)
RAMP_AGC [1] 17 ramp rate for load following/AGC (MW/min)
RAMP_10 [1] 18 ramp rate for 10 minute reserves (MW)

RAMP_30 [1] 19 ramp rate for 30 minute reserves (MW)

RAMP_Q [1] 20 ramp rate for reactive power (2 sec timescale) (MVAr/min)
APF [1] 21 area participation factor

MU_PMAX [2] 22 Kuhn-Tucker multiplier on upper Pg limit (u/MW)
MU_PMIN [2] 23 Kuhn-Tucker multiplier on lower Pg

1. Not included in version 1 case format.

2. Included in OPF output, typically not included (or ignored) in input matrix. Here we assume the objective
function has units u.

3. Used to determine voltage setpoint for optimal power flow only if opf.use_vg option is non-zero (0 by default).
Otherwise generator voltage range is determined by limits set for corresponding bus in bus matrix.

1.3. Input formats 9

AMS, Release 0.9.0

Branch Data

name column description

F_BUS 1 "from" bus number

T _BUS 2 "to" bus number

BR_R 3 resistance (p.u.)

BR X 4 reactance (p.u.)

BR_B 5 total line charging susceptance (p.u.)

RATE_A [1] 6 MVA rating A (long term rating), set to O for unlimited
RATE_B [1] 7 MVA rating B (short term rating), set to O for unlimited
RATE_C [1] 8 MVA rating C (emergency rating), set to 0 for unlimited
TAP 9 transformer off nominal turns ratio

SHIFT 10 transformer phase shift angle (degrees), positive => delay
BR_STATUS 11 initial branch status, 1 = in-service, 0 = out-of-service
ANGMIN [2] 12 minimum angle difference, Of - Ot (degrees)

ANGMAX [2] 13 maximum angle difference, 0,-0 - (degrees)

PF [3] 14 real power injected at "from" bus end (MW)

QF [3] 15 reactive power injected at "from" bus end (MVAr)

PT [3] 16 real power injected at "to" bus end (MW)

QT [3] 17 reactive power injected at "to" bus end (MVAr)

MU_SF [4] 18 Kuhn-Tucker multiplier on MVA limit at "from" bus (u/MVA)
MU_ST [4] 19 Kuhn-Tucker multiplier on MVA limit at "to" bus (u/MVA)
MU_ANGMIN [4] 20 Kuhn-Tucker multiplier lower angle difference limit (u/degree)
MU_ANGMAX [4] 21 Kuhn

1. Used to specify branch flow limits. By default these are limits on apparent power with units in MVA. However,
the 'opf.flow lim' option can be used to specify that the limits are active power or current, in which case the
ratings are specified in MW or kAVjqscr v, respectively. For current this is equivalent to an MVA value at a 1
p-u. voltage.

2. Not included in version 1 case format. The voltage angle difference is taken to be unbounded below if
ANGMIN360 and unbounded above if ANG M AX360. If both parameters are zero, the voltage angle differ-
ence is unconstrained.

3. Included in power flow and OPF output, ignored on input.

4. Included in OPF output, typically not included (or ignored) in input matrix. Here we assume the objective
function has units u.

Generator Cost Data

name col- description
umn
MODEL 1 cost model, 1 = piecewise linear, 2 = polynomial
STARTUP 2 startup cost in US dollars [1]
SHUT- 3 shutdown cost in US dollars [1]
DOWN
NCOST 4 number of points of an n-segment piecewise linear cost function or coefficients of an n-th
order polynomial cost function
COST[2] 5 parameters defining total cost function f(p)

1. Not currently used by any Matpower functions.

10 Chapter 1. Getting started

AMS, Release 0.9.0

2. MODEL = 1, f(p) is defined by the coordinates (p1, f1), (P2, f2), ..., (Pn, fn); MODEL =2, f(p) = c,p"™ +
ot Clpl + ¢p.

1.3.4 PYPOWER

AMS includes PYPOWER cases in version 2 for dispatch modeling and analysis. PYPOWER cases follow the same
format as MATPOWER.

The PYPOWER case is defined as a Python dictionary that includes bus, gen, branch, areas, and gencost. Defines
the PYPOWER case file format.

A PYPOWER case file is a Python file or MAT-file that defines or returns a dict named ppc, referred to as a "PYPOWER
case dict". The keys of this dict are bus, gen, branch, areas, and gencost. With the exception of C{baseMVA}, a
scalar, each data variable is an array, where a row corresponds to a single bus, branch, gen, etc. The format of the data
is similar to the PTI format described in PTI Load Flow Data Format.

Example Case9

ppc = {"version": '2'}

#H-———- Power Flow Data ----- ##
system MVA base
ppc[''baseMVA"] = 100.0

bus data

bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin

ppc["bus"] = array([
[1, 3, O, o, 0, 6, 1, 1, O, 345, 1, 1.1, 0.9],
[2, 2, 0, 0, &, 6, 1, 1, O, 345, 1, 1.1, 0.9],
[3, 2, O, 0, 8, 6, 1, 1, O, 345, 1, 1.1, 0.9],
[4, 1, 0, 0, 0, 6, 1, 1, O, 345, 1, 1.1, 0.9],
[5, 1, 90, 30, 0, 0, 1, 1, ®, 345, 1, 1.1, 0.9],
[6, 1, O, o, 0, 6, 1, 1, O, 345, 1, 1.1, 0.9],
[7, 1, 100, 35, 6, 0, 1, 1, ®, 345, 1, 1.1, 0.9],
[8, 1, O, 0, 8, 6, 1, 1, O, 345, 1, 1.1, 0.9],
[9, 1, 125, 50, 6, 0, 1, 1, ®, 345, 1, 1.1, 0.9]

D

generator data

bus, Pg, Qg, Qmax, Qmin, Vg, mBase, status, Pmax, Pmin, Pcl, Pc2,

Qclmin, Qclmax, Qc2min, Qc2max, ramp_agc, ramp_10, ramp_30, ramp_q, apf
ppc["gen"] = array([

[1, O, 0, 300, -300, 1, 100, 1, 250, 10, O, O, O, O, O, 0, 0, 0, 0, 0, 0],
[2, 163, 0, 300, -300, 1, 100, 1, 300, 10, 0, 0, 0, 0, 0, 0, 0, 0, O, 0, 0],
[3, 8, 6, 300, -300, 1, 100, 1, 270, 10, 0, 0, 0, 0, O, O, O, O, O, O, 0]

D

branch data
fbus, tbus, r, x, b, rateA, rateB, rateC, ratio, angle, status, angmin, angmax
ppc['"branch"] = array([

[1, 4, O, 0.0576, O, 250, 250, 250, 0, 0, 1, -360, 360],

[4, 5, 0.017, ©0.092, 0.158, 250, 250, 250, 0, 0, 1, -360, 360],

(continues on next page)

1.3. Input formats 11

https://github.com/jinningwang/ams/tree/develop/ams/cases/pypower
http://www.ee.washington.edu/research/pstca/formats/pti.txt

AMS, Release 0.9.0

(continued from previous page)

[5, 6, 0.039, 0.17, 0.358, 150, 150, 150, O, O, 1, -360, 360],
[3, 6, O, 0.0586, 0, 300, 300, 300, 0, 0, 1, -360, 3601,
[6, 7, 0.60119, 0.1008, 0.209, 150, 150, 150, O, O, 1, -360, 360],
[7, 8, 0.0085, 0.072, 0.149, 250, 250, 250, O, O, 1, -360, 360],
By Zy, O 0.0625, 0, 250, 250, 250, 0, 0, 1, -360, 360],
[8, 9, 0.032, 0.161, 0.306, 250, 250, 250, O, O, 1, -360, 360],
[9, 4, 0.01, 0.085, 0.176, 250, 250, 250, 0, 0, 1, -360, 360]

D

#H————— OPF Data ----- ##

area data
area refbus
ppc['areas"] = array([

1, 5]
D
generator cost data
1 startup shutdown n x1 yl ... xn yn
2 startup shutdown n c(n-1) ... c0

ppc['gencost"] = array([
[2, 1500, 0, 3, 0.11, 5, 1507,
[2, 2000, O, 3, 0.085, 1.2, 600],
[2, 3000, O, 3, 0.1225, 1, 335]
D

Version Information

There are two versions of the PYPOWER case file format. The current version of PYPOWER uses version 2 of the
PYPOWER case format internally and includes a version field with a value of 2 to make the version explicit. Earlier
versions of PYPOWER used the version 1 case format, which defined the data matrices as individual variables, as
opposed to keys of a dict. Case files in version 1 format with OPF data also included an (unused) areas variable.
While the version 1 format has now been deprecated, it is still handled automatically by loadcase and savecase
which are able to load and save case files in both version 1 and version 2 formats.

See also doc for idx_bus, idx_brch, idx_gen, idx_area and idx_cost regarding constants which can be used as named
column indices for the data matrices. Also described in the first three are additional results columns that are added to
the bus, branch, and gen matrices by the power flow and OPF solvers.

The case dict also allows for additional fields to be included. The OPF is designed to recognize fields named A, 1, u, H,
Cw, N, fparm, z0, z1, and zu as parameters used to directly extend the OPF formulation (see doc for opf for details).
Other user-defined fields may also be included and will be automatically loaded by the 1loadcase function and, given
an appropriate 'savecase' callback function (see doc for add_userfcn), saved by the savecase function.

12 Chapter 1. Getting started

AMS, Release 0.9.0

Bus

—

O S S S—y
o A S

© ® N A » N

bus number (positive integer)

bus type - PQ bus = 1 - PV bus = 2 - reference bus = 3 - isolated bus = 4
Pd, real power demand (MW)

Qd, reactive power demand (MVAr)

Gs, shunt conductance (MW demanded at V = 1.0 p.u.)

Bs, shunt susceptance (MVAr injected at V = 1.0 p.u.)

area number (positive integer)

Vm, voltage magnitude (p.u.)

Va, voltage angle (degrees)

baseKV, base voltage (kV)

zone, loss zone (positive integer)

. maxVm, maximum voltage magnitude (p.u.)

. minVm, minimum voltage magnitude (p.u.)

Generator

O o0 N N W AW

. bus number

. Pg, real power output (MW)

. Qg, reactive power output (MVAr)

. Qmax, maximum reactive power output (MVAr)

. Qmin, minimum reactive power output (MVAr)

. Vg, voltage magnitude setpoint (p.u.)

. mBase, total MVA base of this machine, defaults to baseM VA

. status - > 0 - machine in service - <= 0 - machine out of service
. Pmax, maximum real power output (MW)

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Pmin, minimum real power output (MW)

Pc1, lower real power output of PQ capability curve (MW)
Pc2, upper real power output of PQ capability curve (MW)
Qclmin, minimum reactive power output at Pc1 (MVAr)
Qclmax, maximum reactive power output at Pc1 (MVAr)
Qc2min, minimum reactive power output at Pc2 (MVAr)
Qc2max, maximum reactive power output at Pc2 (MVAr)
ramp rate for load following/AGC (MW/min)

ramp rate for 10-minute reserves (MW)

ramp rate for 30-minute reserves (MW)

ramp rate for reactive power (2-sec timescale) (MVAr/min)

1.3.

Input formats

13

AMS, Release 0.9.0

21.

APEF, area participation factor

Branch

—

—_

11.
12.
13.

© Y ® =2k w D

£, from bus number
t, to bus number
T, resistance (p.u.)
X, reactance (p.u.)
b, total line charging susceptance (p.u.)
rateA, MVA rating A (long-term rating)
rateB, MVA rating B (short-term rating)
rateC, MVA rating C (emergency rating)
ratio, transformer off nominal turns ratio (= O for lines)
angle, transformer phase shift angle (degrees), positive -> delay
* (Gf, shunt conductance at from bus p.u.)
* (Bf, shunt susceptance at from bus p.u.)
* (Gt, shunt conductance at to bus p.u.)
* (Bt, shunt susceptance at to bus p.u.)
initial branch status, 1 - in service, O - out of service
minimum angle difference, angle(Vf) - angle(Vt) (degrees)

maximum angle difference, angle(Vf) - angle(Vt) (degrees)

Generator Cost

Note:

If gen has ng rows, then the first ng rows of gencost contain the cost for active power produced by the

corresponding generators. If gencost has 2 x ng rows then rows ng + 1 to 2 X ng contain the reactive power costs in
the same format.

1.
2.
3.
4.

model, 1 - piecewise linear, 2 - polynomial
startup, startup cost in US dollars
shutdown, shutdown cost in US dollars

N, number of cost coefficients to follow for polynomial cost function, or number of data points for piecewise
linear. The following parameters define the total cost function £(p), where units of £ and p are $/hr and MW
(or MVAr), respectively.

e For MODEL = 1: p®, f0, pl, f1, ..., pn, fnwherep® < pl < ... < pn and the cost £(p) is
defined by the coordinates (p0®, £0), (pl,fl), ..., (pn,fn) of the end/break-points of the piecewise
linear cost function.

e ForMODEL=2:cn, ..., cl, cOn + 1coefficients of an n-th order polynomial cost function, starting
with the highest order, where cost is f(p) = ¢, X p" + ...+ ¢1 X p+ cq.

14

Chapter 1. Getting started

AMS, Release 0.9.0

Area (deprecated)

Note: This data is not used by PYPOWER and is no longer necessary for version 2 case files with OPF data.

1. i, area number

2. price_ref_bus, reference bus for that area

1.4 Test cases

AMS ships with with test cases in the ams/cases folder. The cases can be found in the online repository.

1.4.1 Summary

Below is a summary of the folders and the corresponding test cases. Some folders contain a README file with notes.
When viewing the case folder on GitHub, one can conveniently read the README file below the file listing.

* 5bus: a small PIM 5-bus test case for power flow study [PIM5].

e ieeel4 and ieee39: the IEEE 14-bus and 39-bus test cases [IEEE].

e ieeel23: the IEEE 123-bus test case [TSG].

e matpower: a subset of test cases from [MATPOWER].

e npcc and wecc: NPCC 140-bus and WECC 179-bus test cases [SciData].

1.4.2 How to contribute

We welcome the contribution of test cases! You can make a pull request to contribute new test cases. Please follow the
structure in the cases folder and provide an example Jupyter notebook (see examples/demonstration) to showcase
the results of your system.

1.5 Verification

This section presents the verification of AMS by comparing the DCOPF results with other tools.

1.5.1 DCOPF Verification

Prepared by Jinning Wang.

1.4. Test cases 15

https://github.com/CURENT/ams/tree/master/ams/cases
https://jinningwang.github.io

AMS, Release 0.9.0

Conclusion

For test cases, DCOPF results from AMS are identical to that from MATPOWER.

import datetime

import numpy as np
import pandas as pd

import ams

print("Last run time:", datetime.datetime.now().strftime("%Y-%m- %H :%M:%S"))

print(f'ams: {ams.__version__}")

Last run time: 2024-01-16 16:03:19
ams: 0.8.0.post6+g32850cl

Using built-in MATPOWER cases as inputs.

cases = [
ams.get_case('matpower/casel4d.m'),
ams.get_case('matpower/case39.m'),
ams.get_case('matpower/casell8.m'),
ams.get_case('npcc/npcc.m'),
ams.get_case('wecc/wecc.m'),
ams.get_case('matpower/case300.m"),]

case_names = [case.split('/')[-1].split('."')[0] for case in cases]

ams_obj = np.zeros(len(cases))

for i, case in enumerate(cases):
sp = ams.load(case, setup=True)
sp.DCOPF.init()
sp.DCOPF.solve(solver="ECOS")
ams_obj[i] = sp.DCOPF.obj.v

Following MATPOWER results are obtained using MATPOWER 8.0b1 and Matlab R2023b.

mp_obj = np.array([7642.59177699, 41263.94078588,
125947.8814179, 705667 .88555058,
348228.35589771, 706292.32424361]1)

res = pd.DataFrame({'AMS': ams_obj, 'MATPOWER': mp_obj},
index=case_names)
res

AMS MATPOWER
casel4 7642.591752 7642.591777
case39 41263.940187 41263.940786
casell8 125947.881253 125947.881418

(continues on next page)

16 Chapter 1. Getting started

AMS, Release 0.9.0

(continued from previous page)

npcc 705667.885550 705667.885551
wecc 348228.355895 348228.355898
case300 706292.326604 706292.324244

1.6 License

1.6.1 GNU Public License v3

Copyright 2023-2024 Jinning Wang.

AMS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

AMS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

1.7 Quick install

Working with conda?

AMS will available on conda-forge and can be installed with Anaconda, Miniconda, and Mambaforge:

[conda install -c conda-forge ltbams

Prefer pip?
AMS will be installed via pip from PyPI.

[pip install ltbams

New to Python?

Set up a Mambaforge environment following Setting Up Mambaforge. We recommend Mambaforge on Windows and
Apple Silicon for new users.

Are you a developer?

Installing from source? Looking to develop models? Check the guide in Develop Install.

1.6. License 17

http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html
http://www.gnu.org/licenses/gpl-3.0.html
https://pypi.org/project/ltbams

AMS, Release 0.9.0

18 Chapter 1. Getting started

CHAPTER
TWO

EXAMPLES

Refer to the development development demos for examples prior to preparing this section.

A collection of examples are presented to supplement the tutorial. The examples below are identical to the Jupyter
Notebook in the examples folder of the repository here.

2.1 Simulate

This example gives a "hello world" example to use AMS.

2.1.1 Import and Setting the Verbosity Level

We first import the ams library.

import ams

import datetime

print("Last run time:", datetime.datetime.now().strftime("%Y-%m- %H:%M:%S"))

print(f'ams:{ams.__version__}")

Last run time: 2024-02-24 17:28:40
ams:0.8.5.post62.dev0+gf6ed683

We can configure the verbosity level for logging (output messages) by passing a verbosity level (10-DEBUG, 20-INFO,
30-WARNING, 40-ERROR, 50-CRITICAL) to the stream_level argument of ams.main.config_logger(). Ver-
bose level 10 is useful for getting debug output.

The logging level can be altered by calling config_logger again with new stream_level and file_level.

[ams .config_logger(stream_level=20) }

Note that the above ams.config_logger() is a shorthand to ams.main.config_logger().

If this step is omitted, the default INFO level (stream_level=20) will be used.

19

https://github.com/jinningwang/ams/tree/master/dev/demo
https://github.com/CURENT/ams/tree/master/examples

AMS, Release 0.9.0

2.1.2 Run Simulations

Load Case

AMS support multiple input file formats, including AMS .x1sx file, MATPOWER .m file, PYPOWER .py file, and

PSS/E .raw file.

Here we use the AMS .xlsx file as an example. The source file locates at $HOME/ams/ams/cases/ieee39/

ieee39_uced.x1lsx.

sp = ams.load(ams.get_case('5bus/pjm5bhus_uced.xlsx"),
setup=True,
no_output=True,)

xlsx"...

Input file parsed in 0.2701 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.
If expect a line outage, please set 'u' to 0.

System set up in 0.0021 seconds.

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/5bus/pjm5bus_uced.

Inspect Models and Routines

In AMS, model refers to the device model, and all models are registered to an OrderedDict models.

[sp.models

OrderedDict([('Summary', Summary (3 devices) at 0x1102ec910),
('Bus', Bus (5 devices) at 0x11001f6a0),
('PQ', PQ (3 devices) at 0x14cf7a490),
('PV', PV (3 devices) at 0x137ae0100),
('Slack', Slack (1 device) at 0x14cf7d610),
('Shunt', Shunt (0 devices) at Oxl4cfal4cO),
('Line', Line (7 devices) at 0x14cfal970),
('PVD1', PVD1 (0O devices) at 0xl4cfbb0a@®),
('ESD1', ESD1 (0O devices) at 0xl4cfbb6a®),
('REGCA1', REGCA1l (0 devices) at 0xl4cfbbcl®),
('REGCV1', REGCV1 (0O devices) at 0x14cfc5250),
('REGCV2', REGCV2 (0 devices) at 0xl4cfc5a30),
('Area', Area (3 devices) at 0x14cfc5£f70),
('Region', Region (2 devices) at 0x14cfd3730),
('SFR', SFR (2 devices) at 0xl4cfd3eel),
('SR', SR (2 devices) at 0xl4cfde580),
('NSR', NSR (2 devices) at Oxl4cfde9a0l),
('VSGR', VSGR (0 devices) at 0xl4cfdedcO®),
('GCost', GCost (4 devices) at Ox1l5e5de250),
('SFRCost', SFRCost (4 devices) at 0x15e5de8e0),
('SRCost', SRCost (4 devices) at 0x15e5dee80),
('NSRCost', NSRCost (4 devices) at 0Ox15e5ec2e0),
('VSGCost', VSGCost (O devices) at 0xl15e5ec700),
('DCost', DCost (3 devices) at 0xl1l5e5ecad0d),
('TimeSlot', TimeSlot (0O devices) at 0x15e5ecf70),

(continues on next page)

20

Chapter 2. Examples

AMS, Release 0.9.0

(continued from previous page)

('EDTSlot', EDTSlot (24 devices) at 0x15e5f5a30),
('UCTSlot', UCTSlot (24 devices) at 0x15e5f5e50)])

One can inspect the detailed model data by converting it to a pandas DataFrame.

[sp .PQ.as_df(Q) }
idx u hame bus Vn p® g0 vmax vmin owner ctrl

uid

0 PQ_.1 1.0 PQ 1 Bus_2 230.0 3.0 0.9861 1.1 0.9 None 1.0

1 PQ_2 1.0 PQ 2 Bus_3 230.0 3.0 0.9861 1.1 0.9 None 1.0

2 PQ_3 1.0 PQ 3 Bus_4 230.0 4.0 1.3147 1.1 0.9 None 1.0

In AMS, all supported routines are registered to an OrderedDict routines.

[sp.routines]

OrderedDict ([('DCPF', DCPF at 0x1102eb970),
('PFlow', PFlow at 0x15e60d3a0),
('CPF', CPF at 0x15e60d910),
("ACOPF', ACOPF at 0x15e632a00),
('DCOPF', DCOPF at 0x15e64£f160),
('ED', ED at 0x15e6901c0),

('"EDDG', EDDG at 0x15e688040),
('EDES', EDES at 0x15e60ce50),
('RTED', RTED at 0x15e6b8460),
('RTEDDG', RTEDDG at 0x15e6b8520),
('RTEDES', RTEDES at 0x15e6dbbb0),
('RTEDVIS', RTEDVIS at 0x15e6ff940),
('uC', UC at 0x162648400),

('UCDG', UCDG at 0x16307a490),
('UCES', UCES at 0x16309f3d0),
('DOPF', DOPF at 0x1630c2dc0®),
('DOPFVIS', DOPFVIS at 0x1630e60d0)])

Solve an Routine

Before solving an routine, we need to initialize it first. Here Real-time Economic Dispatch (RTED) is used as an
example.

[sp.RTED.init()]

[Routine <RTED> initialized in 0.0139 seconds. J

(True J

Then, one can solve it by calling run(). Here, argument solver can be passed to specify the solver to use, such as
solver="ECOS"'.

Installed solvers can be listed by ams.shared.INSTALLED_SOLVERS, and more detailes of solver can be found at
CVXPY-Choosing a solver.

2.1. Simulate 21

https://www.cvxpy.org/tutorial/advanced/index.html#choosing-a-solver

AMS, Release 0.9.0

[ams .shared.INSTALLED_SOLVERS J

['CLARABEL',
'CVXOPT',
'"ECOS",
'"ECOS_BB',
'"GLPK',
'"GLPK_MI',
'"GUROBI',
'"MOSEK"',
'0SQP',
'PIQP',
'"PROXQP',
'SCIPY',
'SCS']

[sp .RTED.run(solver="EC0S")]

[RTED solved as optimal in 0.0207 seconds, converged after 9 iterations using solver ECOS. }

(True)

The solved results are stored in each variable itself. For example, the solved power generation of ten generators are
stored in pg.v.

[sp.RTED.pg.v J

[array([z.l, 5.2, 0.7, 2. D]

Here, get_idx () can be used to get the index of a variable.

[sp.RTED.pg .get_idx(Q)]

[['PV_l', 'PV_3"', 'PV_5"', 'Slack_4'] J

Part of the solved results can be accessed with given indices.

[sp.RTED.get(src:'pg', attr="v', idx=['PV_1", 'PV_3'])]

[array([Z.l, 5.2])]

All Vars are listed in an OrderedDict vars.

[sp .RTED.vars]

OrderedDict([('pg', Var: StaticGen.pg),
('aBus', Var: Bus.aBus),
('plf', Var: Line.plf),
('pru', Var: StaticGen.pru),
('prd', Var: StaticGen.prd)])

The Objective value can be accessed with obj.v.

22 Chapter 2. Examples

AMS, Release 0.9.0

[sp.RTED.obj.v

[0.19537500005072062

Similarly, all Constrs are listed in an OrderedDict constrs, and the expression values can also be accessed.

[sp.RTED.constrs

OrderedDict([('pglb', Constraint: pglb [ON]),
('pgub', Constraint: pgub [ON]),
('pb', Constraint: pb [ON]),
('plflb', Constraint: plflb [ON]),
('plfub', Constraint: plfub [ON]),
('alflb', Constraint: alflb [ON]),
('alfub', Constraint: alfub [ON]),
('rbu', Constraint: rbu [ON]),
('rbd', Constraint: rbd [ON]),
('rru', Constraint: rru [ON]),
('rrd', Constraint: rrd [ON]),
('rgu', Constraint: rgu [ON]),
('rgd', Constraint: rgd [ON])])

One can also inspect the Constr values.

[sp.RTED.rgu.v

[array([—996.9, -993.8, -998.3, -997. 1)

2.2 Manipulate the Simulation

This example shows how to play with the simulation, such as contingency analysis and manipulate the constraints.

import ams

import datetime

print("Last run time:", datetime.datetime.now().strftime("%Y-%m-

print(f'ams:{ams.__version__}")

%H:%M:%S"))

Last run time: 2024-02-24 17:28:53
ams:0.8.5.post62.dev0@+gf6ed683

[ams.config_logger(stream_leve1:2®)

2.2. Manipulate the Simulation

23

AMS, Release 0.9.0

2.2.1 Manipulate the Simulation

Load Case

sp = ams.load(ams.get_case('5bus/pjmSbhus_uced.xlsx"),
setup=True,
no_output=True,)

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/5bus/pjm5bus_uced.
xlsx"...

Input file parsed in 0.1465 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.

If expect a line outage, please set 'u' to 0.

System set up in 0.0027 seconds.

The system load are defined in model PQ.

[sp.PQ. as_dfQ]
idx u name bus Vn p® q® vmax vmin owner ctrl

uid

) PQ_.1 1.6 PQ1 Bus_2 230.0 3.0 0.9861 1.1 0.9 None 1.0

1 PQ2 1.0 PQ 2 Bus_3 230.0 3.0 0.9861 1.1 0.9 None 1.0

2 PQ.3 1.0 PQ 3 Bus_4 230.0 4.0 1.3147 1.1 0.9 None 1.0

In RTED, system load is referred as pd.

[sp.RTED.pd.v J

[array([3., 3., 4.1]

Run Simulation

RTED can be solved and one can inspect the results as discussed in previous example.

[sp .RTED.run(solver="ECOS")]

Routine <RTED> initialized in 0.0166 seconds.
RTED solved as optimal in 0.0212 seconds, converged after 9 iterations using solver ECOS.

(Toue]

Power generation pg and line flow p1f can be accessed as follows.

[sp.RTED.pg.v J
[array([z.l, 5.2, 0.7, 2. 1)]
[sp.RTED.plf.v]

24 Chapter 2. Examples

AMS, Release 0.9.0

array([0.70595331, 0.68616798, 0.00192539, -1.58809337, 0.61190663,
-0.70192539, 0.70595331])

Change Load

The load values can be manipulated in the model PQ.

[sp.PQ.set(src:'pG', attr="'v', idx=['PQ_1"', 'PQ_2'], value=[3.2, 3.2])]

(Toue]

According parameters need to be updated to make the changes effective in the optimization model. If not sure which
parameters need to be updated, one can use update () to update all parameters.

[sp.RTED.update('pd‘)]

(True)

After manipulation, the routined can be solved again.

sp.RTED.run(solver="EC0OS")

RTED solved as optimal in 0.0031 seconds, converged after 9 iterations using solver ECOS

[)
[3
(True]
[]
[]

sp.RTED.pg.v

array([2.1, 5.2, 1.1, 2. 1)

An alternative way is to alter the load through RTED.

As pd has owner StaticLoad and soruce p@, the parameter update through RTED actually happens to StaticLoad.p®.

sp.RTED.pd.owner

StaticLoad (3 devices) at 0x15a4e41f0®

lp®l

- —_J _J _J

[
[
(sp-RTED.pd. s7c
[

Similarly, the load can be changed using set method.

[sp.RTED.set(src:'pd', attr="v', idx=['PQ_1", 'PQ_2'], value=[3.8, 3.8]) }

=]

Remember to update the optimization parameters after the change.

2.2. Manipulate the Simulation 25

AMS, Release 0.9.0

[sp.RTED.update('pd‘) J

(True)

We can see that the original load is also updated.

[sp.PQ.as_df()]
idx u name bus Vn p® q® vmax vmin owner ctrl

uid

0 PQ_1 1.0 PQ 1 Bus_2 230.0 3.8 0.9861 1.1 0.9 None 1.0

1 PQ_2 1.0 PQ 2 Bus_3 230.0 3.8 0.9861 1.1 0.9 None 1.0

2 PQ 3 1.0 PQ 3 Bus_4 230.0 4.0 1.3147 1.1 0.9 None 1.0

[sp .RTED.run(solver="EC0S")]

[RTED solved as optimal in 0.0059 seconds, converged after 9 iterations using solver ECOS. J

[True]

As expected, the power generation also changed.

[sp.RTED.pg.v]

[array([z.l, 5.2, 2.3, 2. 1)]

Trip a Generator

We can see that there are three PV generators in the system.

[sp.PV.as_df()]
idx u name Sn Vn bus busr p® g® pmax ... \

uid

0 PV_1 1.0 Alta 100.0 230.0 Bus_1 None 1.0000 0.0 2.1

1 PV_3 1.0 Solitude 100.0 230.0 Bus_3 None 3.2349 0.0 5.2

2 PV_5 1.0 Brighton 100.0 230.0 Bus_5 None 4.6651 0.0 6.0
Qc2min Qc2max Ragc R10 R30 Rqg apf pg® tdl td2

uid

0 0.0 0.0 999.0 999.0 999.0 999.0 0.0 0.0 0.5 0.0

1 0.0 0.0 999.0 999.0 999.0 999.0 0.0 0.0 0.5 0.0

2 0.0 0.0 999.0 999.0 999.0 999.0 0.0 0.0 0.5 0.0

[3 rows x 33 columns]

PV_1 is tripped by setting its connection status u to 0.

[sp.StaticGen.set(src:'u', attr="v', idx='PV_1"', value=0)]

26 Chapter 2. Examples

AMS, Release 0.9.0

(Teue]

In AMS, some parameters are defiend as constants in the numerical optimization model to follow the CVXPY DCP
and DPP rules. Once non-parametric parameters are changed, the optimization model will be re-initialized to make the
changes effective.

More details can be found at CVXPY - Disciplined Convex Programming.

[sp.RTED.update()]
[Re—init RTED OModel due to non-parametric change. J
[True]

Then we can re-solve the model.

[sp .RTED.run(solver="ECOS") J

[RTED solved as optimal in 0.0159 seconds, converged after 8 iterations using solver ECOS.]

(True J

We can see that the tripped generator has no power generation.

[sp.RTED.pg.v.round(Z) }
[array([—@. 5.2, 4.4, 2.1]
Trip a Line

We can inspect the Line model to check the system topology.

[sp.Line.as_df()]
idx u name bus1 bus2 Sn fn Vnl Vn2 r \

uid

0 Line_® 1.0 Line AB Bus_1 Bus_2 100.0 60.0 230.0 230.0 0.00281

1 Line_1 1.0 Line AD Bus_1 Bus_4 100.0 60.0 230.0 230.0 0.00304

2 Line_2 1.0 Line AE Bus_l1 Bus_5 100.0 60.0 230.0 230.0 0.00064

3 Line_.3 1.0 Line BC Bus_2 Bus_3 100.0 60.0 230.0 230.0 0.00108

4 Line_.4 1.0 Line CD Bus_3 Bus_4 100.0 60.0 230.0 230.0 0.00297

5 Line_5 1.0 Line DE Bus_4 Bus_5 100.0 60.0 230.0 230.0 0.00297

6 Line_6 1.0 Line AB2 Bus_1 Bus_2 100.0 60.0 230.0 230.0 0.00281

tap phi rate_a rate_b rate_c owner xcoord ycoord amin \

uid

0 1.0 0.0 4.0 999.0 999.0 None None None -6.283185

1 1.0 0.0 999.0 999.0 999.0 None None None -6.283185

2 1.0 0.0 999.0 999.0 999.0 None None None -6.283185

3 1.0 0.0 999.0 999.0 999.0 None None None -6.283185

4 1.0 0.0 999.0 999.0 999.0 None None None -6.283185

(continues on next page)

2.2. Manipulate the Simulation 27

https://www.cvxpy.org/tutorial/dcp/index.html#disciplined-convex-programming

AMS, Release 0.9.0

5 1.0 0.0 2.4 999.0 999.0 None

6 1.0 0.0 4.0 999.0 999.0 None
amax

uid

0 6.283185

1 6.283185

2 6.283185

3 6.283185

4 6.283185

5 6.283185

6 6.283185

[7 rows x 28 columns]

None
None

(continued from previous page)

None -6.283185
None -6.283185

Here line 2 is tripped by setting its connection status u to 0.

Note that in ANDES, dynamic simulation of line tripping should use model Toggle.

sp.Line.set(src="u', attr='v', idx='Line_1', value=0)

—
[
[
(0]

sp.RTED.update()

Re-init RTED OModel due to non-parametric change.

—
[
[
(¢’]

sp.RTED.run(solver="EC0S")

RTED solved as optimal in 0.0182 seconds, converged after 8 iterations using solver ECOS

—
[
c
(0]

e N e N o N o N e N o N o N G

]
]
)
]
)
]
3
)

Here we can see the tripped line has no flow.

[sp.RTED.plf.v.round(Z)

[array([1.34, 0. , -2.68, -1.12, 0.28, -1.72, 1.34])

28

Chapter 2. Examples

AMS, Release 0.9.0

2.2.2 Disable the Constraints

In addition to the system parameters, the constraints can also be manipulated.

Here, we load the case to a new system.

spc = ams.load(ams.get_case('5bus/pjm5bus_uced.xlsx'),
setup=True,
no_output=True,)

xlsx". ..

Input file parsed in 0.0413 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.
If expect a line outage, please set 'u' to 0.

System set up in 0.0021 seconds.

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/5bus/pjm5bus_uced.

spc.RTED.init()

Routine <RTED> initialized in 0.0091 seconds.

True

spc.RTED.set(src="rate_a', attr='v', idx=['Line_2'], value=1.4)

True

spc.RTED.update('rate_a')

True

e N o N o N o N o N e N S|

- - J __J —__J —_J _J _J

We can inspect the constraints status as follows. All constraints are turned on by default.

[spc.RTED.constrs

OrderedDict([('pglb', Constraint: pglb [ON]),
('pgub', Constraint: pgub [ON]),
('pb', Constraint: pb [ON]),
('plflb', Constraint: plflb [ON]),
('plfub', Constraint: plfub [ON]),
('alflb', Constraint: alflb [ON]),
('alfub', Constraint: alfub [ON]),
('rbu', Constraint: rbu [ON]),
('rbd', Constraint: rbd [ON]),
('rru', Constraint: rru [ON]),
('rrd', Constraint: rrd [ON]),
('rgu', Constraint: rgu [ON]),
('rgd', Constraint: rgd [ON])])

Then, solve the dispatch and inspect the line flow.

2.2. Manipulate the Simulation

29

AMS, Release 0.9.0

[spc .RTED.run(solver="ECOS") J

—ECOS.

RTED solved as optimal in 0.0143 seconds, converged after 10 iterations using solver.. ’

[True J
[spc.RTED.plf.v.round(Z) J
[array([0.71, 0.69, 0. , -1.59, 0.61, -8.7 , 0.711)]

In the next, we can disable specific constraints, and the parameter name takes both single constraint name or a list of
constraint names.

[spc.RTED.disable(['plflb', 'plfub'])]

[Turn off constraints: plflb, plfub]

(True]

Now, it can be seen that the two constraints are disabled.

[spc .RTED. constrs J

OrderedDict([('pglb', Constraint: pglb [ON]),
('pgub', Constraint: pgub [ON]),
('pb', Constraint: pb [ON]),
('plflb', Constraint: plflb [OFF]),
('plfub', Constraint: plfub [OFF]),
('alflb', Constraint: alflb [ON]),
('alfub', Constraint: alfub [ON]),
('rbu', Constraint: rbu [ON]),
('rbd', Constraint: rbd [ON]),
('rru', Constraint: rru [ON]),
('rrd', Constraint: rrd [ON]),
('rgu', Constraint: rgu [ON]),
('rgd', Constraint: rgd [ON])])

[spc .RTED.run(solver="ECOS")]

Disabled constraints: plflb, plfub
Routine <RTED> initialized in 0.0087 seconds.
RTED solved as optimal in 0.0146 seconds, converged after 9 iterations using solver ECOS.

(True)

‘We can see that the line flow limits are not in effect.

[spc.RTED.plf.v.round(Z)]

30 Chapter 2. Examples

AMS, Release 0.9.0

[array([0.71, 0.69, 0. , -1.59,

0.61, -0.7 , 0.71])

Similarly, you can also enable the constraints again.

spc.RTED.enable(['plflb", "plfub'])

Turn on constraints: plflb, plfub

True

spc.RTED.constrs

N Y Y

- __J

rbu
rbd
rru
rrd
rgu
rgd

OrderedDict([('pglb', Constraint: pglb [ON]),
('pgub', Constraint: pgub [ON]),
('pb', Constraint: pb [ON]),
('plflb', Constraint: plflb [ON]),
('plfub', Constraint: plfub [ON]),
('alflb', Constraint: alflb [ON]),
('alfub', Constraint: alfub [ON]),
('rbu', Constraint:
('rbd', Constraint:
('rru', Constraint:
('rrd', Constraint:
('rgu', Constraint:
('rgd', Constraint:

[ONI),
[ONI),
[ONDD,
[ONDD,
[ONI),
[ONID> 1)

[spc.RTED.run(solver:'ECOS')

Routine <RTED> initialized in 0.0094 seconds.
RTED solved as optimal in 0.0163 seconds, converged after 10 iterations using solver.

—ECOS.

True

[spc.RTED.plf.v.round(Z)

array([0.71, 0.69, 0. , -1.59,

0.61, -0.7 , 0.71])

)
]
J

Alternatively, you can also force init the dispatch to rebuild the system matrices, enable all constraints, and re-init the

optimization models.

spc.RTED.disable(['plflb", 'plfub',

'rgu’, 'rgd'])

True

spc.RTED.init(force=True)

[Turn off constraints: plflb, plfub, rgu, rgd

| U D

2.2. Manipulate the Simulation

31

AMS, Release 0.9.0

[Routine <RTED> initialized in 0.0094 seconds. J
[True]
[spc.RTED.constrs]

OrderedDict([('pglb', Constraint: pglb [ON]),
('pgub', Constraint: pgub [ON]),
('pb', Constraint: pb [ON]),
('plflb', Constraint: plflb [ON]),
('plfub', Constraint: plfub [ON]),
('alflb', Constraint: alflb [ON]),
('alfub', Constraint: alfub [ON]),
('rbu', Constraint: rbu [ON]),
('rbd', Constraint: rbd [ON]),
('rru', Constraint: rru [ON]),
('rrd', Constraint: rrd [ON]),
('rgu', Constraint: rgu [ON]),
('rgd', Constraint: rgd [ON])])

2.2.3 Alter the Config

In AMS, routines have an config object as configuration settings.

spf = ams.load(ams.get_case('5bus/pjm5bus_uced.xlsx'),
setup=True,
no_output=True,)

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/5bus/pjm5bus_uced.
xlsx". ..

Input file parsed in 0.0951 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.

If expect a line outage, please set 'u' to 0.

System set up in 0.0024 seconds.

In RTED, the default interval is 5/60 [hour], and the formulations has been adjusted to fit the interval.

spf.RTED.config

[OrderedDict([('t', 0.08333333333333333)])]
[spf.RTED.run(solver:'ECOS') J

Routine <RTED> initialized in 0.0113 seconds.
RTED solved as optimal in 0.0155 seconds, converged after 9 iterations using solver ECOS.

(True J

[spf.RTED.obj.v J

32 Chapter 2. Examples

AMS, Release 0.9.0

[0. 19537500005072062

‘We can update the interval to 1 [hour] and re-solve the dispatch.

Note that in this senario, compared to DCOPF, RTED has extra costs for pru and prd.

[spf.RTED .config.t = 60/60

Remember to update the parameters after the change.

spf.RTED.update()

Re-init RTED OModel due to non-parametric change.

spf.RTED.run(solver="SCS")

[
[
(True
[

- —__J —_J

RTED solved as optimal in 0.0181 seconds, converged after 325 iterations using solver.
—SCS.

[True

We can then get the objective value.

[spf.RTED.obj.v

[2.3444999986498134

Note that in this build-in case, the cru and crd are defined as zero.

spf.RTED.cru.v

array([0., 0., 0., 0.])

[
[
[spf.RTED .crd.v
[array([®., 0., 0., 0.1

-/ - _J —_J «_J

As benchmark, we can solve the DCOPF.

[spf.DCOPF .run(solver="SCS")

Routine <DCOPF> initialized in 0.0048 seconds.
DCOPF solved as optimal in 0.0101 seconds, converged after 225 iterations using solver.,
-SCS.

[True

As expected, the DCOPF has a similar objective value.

2.2. Manipulate the Simulation 33

AMS, Release 0.9.0

[spf.DCOPF.obj.v

[2.3445094955490@13

2.3 Inspecting Models

We first import the ams library and configure the logger level.

import ams

import datetime

print("Last run time:", datetime.datetime.now().strftime("%Y-%m- %H:%M:%S"))

print(f'ams:{ams.__version__}")

Last run time: 2024-02-24 17:29:03
ams:0.8.5.post62.dev0+gf6ed683

[ams.config_logger(stream_leve1:2®)

Load an example case.

sp = ams.load(ams.get_case('5bus/pjmSbhus_uced.xlsx"),
setup=True,
no_output=True,)

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/5bus/pjm5bus_uced.
—xlsx". ..

Input file parsed in 0.1415 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.

If expect a line outage, please set 'u' to 0.

System set up in 0.0022 seconds.

2.3.1 List all models and routines

[print(sp.supported_models())

Supported Groups and Models

Group [Models
_____________ o
ACLine | Line
ACTopology | Bus
Collection | Area, Region
Cost | GCost, SFRCost, VSGCost, DCost
DG | PVD1, ESD1

(continues on next page)

34 Chapter 2. Examples

AMS, Release 0.9.0

(continued from previous page)

Horizon | TimeSlot, EDTSlot, UCTSlot
Information | Summary

RenGen | REGCA1

Reserve | SFR, SR, NSR, VSGR
StaticGen | PV, Slack

StaticLoad | PQ

StaticShunt | Shunt

Undefined | SRCost, NSRCost

VSG | REGCV1, REGCV2

Similarly, all supported routiens can be listed.

[print(sp.supported_routines())

Supported Types and Routines

Routines

I
=+
ACED | ACOPF
I
I
I
|

DCED | DCOPF, ED, EDDG, EDES, RTED, RTEDDG, RTEDES, RTEDVIS
DCUC | UC, UCDG, UCES

DED DOPF, DOPFVIS

PF DCPF, PFlow, CPF

2.3.2 Check routine documentation

To check the documentation for the routine model, use its doc () method.

[print(sp.RTED.doc())

Routine <RTED> in Type <DCED>
DC-based real-time economic dispatch (RTED).
RTED extends DCOPF with:

- Mapping dicts to interface with ANDES
- Function "~ “dc2ac’® to do the AC conversion

- Vars for SFR reserve: "‘pru ~ and " “prd

- Param for linear SFR cost: " ‘cru ~ and " “crd

- Param for SFR requirement: ' “du ~ and "~ “dd

- Param for ramping: start point " “pg® = and ramping limit " "R10 "

- Param " "pg® ', which can be retrieved from dynamic simulation results.

The function "~ “dc2ac’® sets the " “vBus = value from solved ACOPF.
Without this conversion, dynamic simulation might fail due to the gap between
DC-based dispatch results and AC-based dynamic initialization.

1. Formulations has been adjusted with interval "~ “config.t °, 5/60 [Hour] by default.

(continues on next page)

2.3. Inspecting Models 35

AMS, Release 0.9.0

(continued from previous page)

2. The tie-line flow has not been implemented in formulations.

Objective
Name | Unit | Description

_____ +______+__________________________________
obj | § | total generation and reserve cost
Constraints

Name Description

pglb pg min

pgub pg max

pb power balance

plflb | line flow lower bound

|
+
|
|
|
|
plfub | line flow upper bound
|
I
|
|
|
|
|
|

alflb | line angle difference lower bound

alfub | line angle difference upper bound

rbu RegUp reserve balance

rbd RegDn reserve balance

rru RegUp reserve source

rrd RegDn reserve source

rgu Gen ramping up

rgd Gen ramping down
Vars
Name | Description | Unit | Properties

—————— B e

pg | Gen active power | p.u. |

aBus | Bus voltage angle | rad |

plf | Line flow | p.u. |

pru | RegUp reserve | p.u. | nonneg

prd | RegDn reserve | p.u. | nonneg

Services

Name [Description [Type
________ o
ctrle | Effective Gen controllability | NumOpDual
nctrl | Effective Gen uncontrollability | NumOp
nctrle | Effective Gen uncontrollability | NumOpDual
amax | max line angle difference | NumOp

gs | Sum Gen vars vector in shape of zone | ZonalSum
ds | Sum pd vector in shape of zone | ZonalSum
pdz | zonal total load | NumOpDual
dud | zonal RegUp reserve requirement | NumOpDual
ddd | zonal RegDn reserve requirement | NumOpDual
Parameters

(continues on next page)

36 Chapter 2. Examples

AMS, Release 0.9.0

Name | Description
————————— et et ittt =
c2 | Gen cost coefficient 2 |
cl | Gen cost coefficient 1 |
cO | Gen cost coefficient 0 |
ug | Gen connection status |
ctrl | Gen controllability |
pmax | Gen maximum active power |
pmin | Gen minimum active power |
p® | Gen initial active power |
pd | active demand |
rate_a | long-term flow limit |
gsh | shunt conductance |
Cg | Gen connection matrix |
Ccl | Load connection matrix |
CftT | Transpose of line connection matrix |
Csh | Shunt connection matrix |
Bbus | Bus admittance matrix |
Bf | Bf matrix |
Pbusinj | Bus power injection vector |
Pfinj | Line power injection vector |
zg | Gen zone |
zd | Load zone |
R10 | 10-min ramp rate |
cru | RegUp reserve coefficient |
crd | RegDown reserve coefficient |
du | RegUp reserve requirement in percentage |
dd | RegDown reserve requirement in percentage |

(continued from previous page)

$/(@.u.*2)
$/(.u.)
$

=T T T T
c o cc

< .
>

p-u./h
$/(p.u.)
$/(p.u.)
%

%

2.3.3 Data Check

The summary () method gives a brief summary of the system and routiens that passed the data check.

[sp.summary()

-> Systen size:

Base: 100 MVA; Frequency: 60 Hz

5 Buses; 7 Lines; 4 Static Generators

Active load: 10.00 p.u.; Reactive load: 3.29 p.u.
-> Data check results:

ACED: ACOPF

DCED: DCOPF, ED, RTED
DCUC: UC

DED: DOPF

PF: DCPF, PFlow, CPF

2.3. Inspecting Models

37

AMS, Release 0.9.0

2.4 Casel/O

AMS supprots multiple case formats.

Still, first import the ams library and configure the logger level.

import os
import ams

import datetime

print("Last run time:", datetime.datetime.now().strftime("%Y-%m- %H:%M:%S"))

print(f'ams: {ams.__version__}")

Last run time: 2024-02-24 17:29:23
ams:0.8.5.post62.dev0+gf6ed683

[ams.config_logger(stream_leve1:2®)

2.4.1 Input

AMS Execel

sp_xlsx = ams.load(ams.get_case('ieeel4d/ieeeld_uced.xlsx"'),
setup=True,
no_output=True,)

sp_xlsx.summary()

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/ieeeld4/ieeeld_uced.
xlsx"...

Input file parsed in 0.1440 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.
If expect a line outage, please set 'u' to 0.

System set up in 0.0043 seconds.

-> Systen size:

Base: 100 MVA; Frequency: 60 Hz

14 Buses; 20 Lines; 5 Static Generators

Active load: 2.24 p.u.; Reactive load: 0.95 p.u.

-> Data check results:

ACED: ACOPF

DCED: DCOPF, ED, RTED
DCUC: UC

DED: DOPF

PF: DCPF, PFlow, CPF

38 Chapter 2. Examples

AMS, Release 0.9.0

AMS JSON

sp_json = ams.load(ams.get_case('ieeeld/ieeeld.json'),
setup=True,
no_output=True,)

sp_json. summary ()

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/ieeeld4/ieeeld.json"..
Input file parsed in 0.0021 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.

If expect a line outage, please set 'u' to 0.

System set up in 0.0040 seconds.

-> Systen size:

Base: 100 MVA; Frequency: 60 Hz

14 Buses; 20 Lines; 5 Static Generators

Active load: 2.24 p.u.; Reactive load: 0.95 p.u.
-> Data check results:

PF: DCPF, PFlow, CPF

MATPOWER

sp_mp = ams.load(ams.get_case('matpower/caseld.m'),
setup=True,
no_output=True,)

sp_mp . summary ()

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/matpower/casel4.m"...
Input file parsed in 0.0071 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.

If expect a line outage, please set 'u' to 0.

System set up in 0.0028 seconds.

-> Systen size:

Base: 100.0 MVA; Frequency: 60 Hz

14 Buses; 20 Lines; 5 Static Generators

Active load: 2.59 p.u.; Reactive load: 0.74 p.u.

-> Data check results:

ACED: ACOPF
DCED: DCOPF
DED: DOPF

PF: DCPF, PFlow, CPF

Note that AMS also supports PYPOWER format py-file.

2.4. Casel/O 39

AMS, Release 0.9.0

PSS/E RAW

AMS also supports PSS/E RAW format for power flow analysis.

sp_raw = ams.load(ams.get_case('ieeeld/ieeeld.raw'),
setup=True,
no_output=True,)

sp_raw. summary ()

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/ieeeld/ieeeld.raw"...
Input file parsed in 0.0102 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.
If expect a line outage, please set 'u' to 0.

System set up in 0.0030 seconds.

-> Systen size:

Base: 100.0 MVA; Frequency: 60.0 Hz

14 Buses; 20 Lines; 5 Static Generators

Active load: 2.24 p.u.; Reactive load: 0.95 p.u.

-> Data check results:

PF: DCPF, PFlow, CPF

2.4.2 Output

Vice versa, AMS supports multiple output formats.

ams.io.xlsx.write(system=sp_xlsx,
outfile="out.xlsx"',)

xlsx file written to "out.xlsx"

True

os.remove('out.xlsx")

s N s N R
- —__J

Similarly, JSON output formats can be achieved by using ams.io. json.write.

2.5 Interoperation with ANDES

One of the most interesting feature of AMS is its interoperation with dynamic simulator ANDES.

Interoperation includes compatible case conversion and data exchange, thus it facilitates dispatch-dynamic co-
simulation using AMS and ANDES.

import numpy as np

import andes
import ams

import datetime

40 Chapter 2. Examples

AMS, Release 0.9.0

print("Last run time:", datetime.datetime.now().strftime("%Y-%m-
print(f'andes: {andes.__version__}"')
print(f'ams:{ams.__version__}")

%H :9%6M:%S"))

Last run time: 2024-02-24 17:29:32
andes:1.9.0
ams:0.8.5.post62.dev0+gf6ed683

[ams.config_logger(stream_leve1:2®)

2.5.1 Dispatch

sp = ams.load(ams.get_case('ieeeld/ieeeld_uced.xlsx"),
setup=True,
no_output=True,)

—x1lsx"...
Input file parsed in 0.1225 seconds.

If expect a line outage, please set 'u' to 0.
System set up in 0.0042 seconds.

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/ieeel4/ieeel4_uced.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.

sp.RTED.init()

Routine <RTED> initialized in 0.0171 seconds.

True

sp.RTED.run(solver="EC0S")

s N cus N anars N s

- «—_J _J _J

—ECOS.

RTED solved as optimal in 0.0245 seconds, converged after 11 iterations using solver..

[True

2.5.2 Convert to ANDES

The built-in ANDES interface can convert an AMS case to ANDES case in memory.

The bridge between AMS and converted ANDES is the shared power flow devices, Bus, PQ, PV, Slack, Line, and

Shunt.

sa = sp.to_andes(setup=True,

addfile=andes.get_case('ieeeld/ieeeld_full.xlsx'))

2.5. Interoperation with ANDES

41

AMS, Release 0.9.0

Parsing additional file "/Users/jinningwang/Documents/work/mambaforge/envs/ams/lib/
—.python3.9/site-packages/andes/cases/ieeeld4/ieeeld_full.xlsx"...

Following PFlow models in addfile will be overwritten: <Bus>, <PQ>, <PV>, <Slack>,
—<Shunt>, <Line>, <Area>

Addfile parsed in 0.0519 seconds.

System converted to ANDES in 0.1987 seconds.

AMS system 0x10a441af0® is linked to the ANDES system 0x17£f0720a0.

If you wish to add devices to the converted ANDES system, set setup=False to skip the ANDES setup process.

As indicated by the output information, in the conversion process, ANDES power flow devices will be overwritten by
AMS ones, if exists.

Upon a successful conversion, you are ready to enjoy full capability of ANDES.

help command can give a quick reference.

[help(sp.to_andes)

Help on method to_andes in module ams.system:

to_andes(setup=True, addfile=None, **kwargs) method of ams.system.System instance
Convert the AMS system to an ANDES system.

A preferred dynamic system file to be added has following features:
1. The file contains both power flow and dynamic models.

2. The file can run in ANDES natively.

3. Power flow models are in the same shape as the AMS system.

4. Dynamic models, if any, are in the same shape as the AMS system.

Parameters
setup : bool, optional

Whether to call “setup() after the conversion. Default is True.
addfile : str, optional

The additional file to be converted to ANDES dynamic mdoels.
**kwargs : dict

Keyword arguments to be passed to " andes.system.System’ .

Returns
andes : andes.system.System
The converted ANDES system.

>>> import ams

>>> import andes

>>> sp = ams.load(ams.get_case('ieeeld4/ieeeld_rted.xlsx'), setup=True)

>>> sa = sp.to_andes(setup=False,
addfile=andes.get_case('ieeeld4/ieeeld_wt3.x1lsx"'),
overwrite=True, no_keep=True, no_output=True)

42 Chapter 2. Examples

AMS, Release 0.9.0

2.5.3 Interoperation with ANDES

In the interface class dyn, the link table is stored in dyn.1link.

It describes the mapping relationships between power flow devices and dynamic devices.

[sp.dyn.link]
stg_idx bus_idx syg_idx gov_idx dg_idx rg_idx gammap gammaq
® Slack_1 1 GENROU_1 TGOV1_1 NaN NaN 1.0 1.0
1 PV_5 8 GENROU_5 TGOV1_5 NaN NaN 1.0 1.0
2 PV_4 6 GENROU_4 TGOV1_4 NaN NaN 1.0 1.0
3 PV_3 3 GENROU_3 TGOV1_3 NaN NaN 1.0 1.0
4 PV_2 2 GENROU_2 TGOV1_2 NaN NaN 1.0 1.0

Send

As there is a gap between DC-based dispatch and AC-based TDS, a conversion is required to ensure the TDS initial-
ization.

[sp.RTED.chac()]

Routine <ACOPF> initialized in 0.0042 seconds.

ACOPF solved in 0.2784 seconds, converged after 12 iterations using solver PYPOWER-PIPS.
Attribute <aBus> already exists in <RTED>.

<RTED> is converted to AC.

(True J

In the RTED routine, there are two mapping dictionaries to define the data exchange, namely, map1 for receiving data
from ANDES and map2 for sending data to ANDES.

[sp .RTED.map?2 J
OrderedDict([('vBus', ('Bus', 'v0')),
('ug', ('StaticGen', 'u')),
('pg', ('StaticGen', 'p®'))1D)
[sp.dyn.send(adsys:sa, routine="'RTED") J
Send <RTED> results to ANDES <0x17f0720a0>...
Send <vBus> to Bus.v0
Send <ug> to StaticGen.u
Send <pg> to StaticGen.p®
[True]

2.5. Interoperation with ANDES 43

AMS, Release 0.9.0

Run ANDES

Sometimes, the ANDES TDS initialization may fail due to inapproriate limits.

Here, we alleviate the TGOV1 limit issue by enlarging the Pmax and Pmin to the same value.

sa.TGOV1.set(src="VMAX', attr='v', idx=sa.TGOV1.idx.v, value=100*np.ones(sa.TGOV1.n))
sa.TGOV1.set(src="VMIN', attr='v', idx=sa.TGOV1.idx.v, value=np.zeros(sa.TGOV1.n))

[True

Run power flow.

[sa .PFlow.run()

[True

Try to init TDS.

[_ - sa.TDS.init(Q)

Run TDS.

sa.TDS.config.no_tqdm = True # disable progress bar
sa.TDS.run()

[True

Receive

sp.RTED.mapl

[OrderedDict([('ug', ('StaticGen', 'u')), ('pg®', ('StaticGen', 'p'))]1)
[sp .dyn.receive(adsys=sa, routine='RTED')

Receive <ug> from SynGen.u
Receive <pg®> from SynGen.Pe

[True

The RTED parameter pg@, is retrieved from ANDES as the corresponding generator output power.

[sp.RTED.pg@.v

[array([®.3226®®84, 0.01 , 0.02 , 0.01 , 1.973939971)

44 Chapter 2.

Examples

AMS, Release 0.9.0

2.6 Multi-period Dispatch Simulation

Multi-period dispatch economic dispatch (ED) and unit commitment (UC) is also available.

In this case, we will show a 24-hour ED simulation.

import ams

import datetime

print("Last run time:", datetime.datetime.now().strftime("%Y-%m- %H:%M:%S"))

print(f'ams:{ams.__version__}")

Last run time: 2024-02-24 17:29:42
ams:0.8.5.post62.dev0@+gf6ed683

[ams .config_logger(stream_level=20) J

2.6.1 Load Case

sp = ams.load(ams.get_case('5bus/pjm5bus_demo.xlsx"),
setup=True,
no_output=True,)

Parsing input file "/Users/jinningwang/Documents/work/ams/ams/cases/5bus/pjm5bus_demo.
xlsx". ..

Input file parsed in 0.1202 seconds.

Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.

If expect a line outage, please set 'u' to 0.

System set up in 0.0022 seconds.

2.6.2 Reginonal Design

The disaptch models in AMS has develoepd with regional structure, and it can be inspected in device Region.

[sp .Region.as_df() J

idx u name
uid
0 ZONE_1 1.0 ZONE 1
1 ZONE_2 1.0 ZONE 2

In device Bus, the Param zone indicates the zone of the bus. Correspondingly, the region of generator and load are
determined by the bus they connected.

[sp.Bus.as_df()]

2.6. Multi-period Dispatch Simulation 45

AMS, Release 0.9.0

idx u name Vn vmax vmin vO a® xcoord ycoord area \
uid
0 Bus_1 1.0 A 230.0 1.1 0.9 1.0 0.0 0 0 1
1 Bus_2 1.0 B 230.0 1.1 0.9 1.0 0.0 0 0 1
2 Bus_3 1.0 C 230.0 1.1 0.9 1.0 0.0 0 0 2
3 Bus_4 1.0 D 230.0 1.1 0.9 1.0 0.0 0 0 2
4 Bus_5 1.0 E 230.0 1.1 0.9 1.0 0.0 0 0 3
zZone owner
uid
0 ZONE_1 None
1 ZONE_1 None
2 ZONE_1 None
3 ZONE_1 None
4 ZONE_1 None

2.6.3 Multi-period Dispatch Base

In AMS, multi-period dispatch involves devices in group Horizon. This group is developed to provide time-series data
for multi-period dispatch.

[sp.Horizon.models J

OrderedDict([('TimeSlot', TimeSlot (® devices) at 0x15b19ee20),
('EDTSlot', EDTSlot (6 devices) at 0x15bla58e0),
('UCTSlot', UCTSlot (6 devices) at 0x15b1a5do0)])

We can get the idx of StaticGens.

[sp.StaticGen.get_idx()]

[['PV_l', 'PV_3', 'PV_5"', 'Slack_4']]

In EDTS1lot, Param sd refers the load factors of each region in each time slot, and Param ug represents the generator
commitment status in each time slot.

To be more specific, EDT1 has sd=0.0793,0.0, which means the load factor of region 1 is 0.0793 in the first time
slot, and 0.0 in the second time slot.

Next, EDT1 has ug=1, 1,1, 1, and it means the commitment status of generator PV_1, PV_3, PV_5, and Slack_4 are
all online.

[sp.EDTSlot.as_df()]
idx u name